Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-38552793

RESUMEN

OBJECTIVES: The aim of this study was to assess the safety and immunogenicity of a dose-sparing fractional intradermal (ID) booster strategy with the mRNA-1273 COVID-19 vaccine. METHODS: COVID-19 naive adults aged 18-30 years were recruited from a previous study on primary vaccination regimens that compared 20 µg ID vaccinations with 100 µg intramuscular (IM) vaccinations with mRNA-1273 as the primary vaccination series. Participants previously immunized with ID regimens were randomly assigned (1:1) to receive a fractional ID booster dose (20 µg) or the standard-of-care intramuscular (IM) booster dose (50 µg) of the mRNA-1273 vaccine, 6 months after completing their primary series (ID-ID and ID-IM group, respectively). Participants that had received a full dose IM regimen as the primary series, received the IM standard-of-care booster dose (IM-IM group). In addition, COVID-19 naive individuals aged 18-40 years who had received an IM mRNA vaccine as the primary series were recruited from the general population to receive a fractional ID booster dose (IM-ID group). Immunogenicity was assessed using IgG anti-spike antibody responses and neutralizing capacity against SARS-CoV-2. Cellular immune responses were measured in a sub-group. Safety and tolerability were monitored. RESULTS: In January 2022, 129 participants were included in the study. Fractional ID boosting was safe and well tolerated, with fewer systemic adverse events compared with IM boosting. At day 28 post-booster, anti-spike S1 IgG geometric mean concentrations were 9106 (95% CI, 7150-11 597) binding antibody units (BAU)/mL in the IM-IM group and 4357 (3003-6322) BAU/mL; 6629 (4913-8946) BAU/mL; and 5264 (4032-6873) BAU/mL in the ID-IM, ID-ID, and IM-ID groups, respectively. DISCUSSION: Intradermal boosting provides robust immune responses and is a viable dose-sparing strategy for mRNA COVID-19 vaccines. The favourable side-effect profile supports its potential to reduce vaccine hesitancy. Fractional dosing strategies should be considered early in the clinical development of future mRNA vaccines to enhance vaccine availability and pandemic preparedness.

2.
EClinicalMedicine ; 61: 102040, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37337616

RESUMEN

Background: Patients with haematological malignancies have impaired antibody responses to SARS-CoV-2 vaccination. We aimed to investigate whether a fourth mRNA COVID-19 vaccination improved antibody quantity and quality. Methods: In this cohort study, conducted at 5 sites in the Netherlands, we compared antibody concentrations 28 days after 4 mRNA vaccinations (3-dose primary series plus 1 booster vaccination) in SARS-CoV-2 naive, immunocompromised patients with haematological malignancies to those obtained by age-matched, healthy individuals who had received the standard primary 2-dose mRNA vaccination schedule followed by a first booster mRNA vaccination. Prior to and 4 weeks after each vaccination, peripheral blood samples and data on demographic parameters and medical history were collected. Concentrations of antibodies that bind spike 1 (S1) and nucleocapsid (N) protein of SARS-CoV-2 were quantified in binding antibody units (BAU) per mL according to the WHO International Standard for COVID-19 serological tests. Seroconversion was defined as an S1 IgG concentration >10 BAU/mL and a previous SARS-CoV-2 infection as N IgG >14.3 BAU/mL. Antibody neutralising activity was tested using lentiviral-based pseudoviruses expressing spike protein of SARS-CoV-2 wild-type (D614G), Omicron BA.1, and Omicron BA.4/5 variants. This study is registered with EudraCT, number 2021-001072-41. Findings: Between March 24, 2021 and May 4, 2021, 723 patients with haematological diseases were enrolled, of which 414 fulfilled the inclusion criteria for the current analysis. Although S1 IgG concentrations in patients significantly improved after the fourth dose, they remained significantly lower compared to those obtained by 58 age-matched healthy individuals after their first booster (third) vaccination. The rise in neutralising antibody concentration was most prominent in patients with a recovering B cell compartment, although potent responses were also observed in patients with persistent immunodeficiencies. 19% of patients never seroconverted, despite 4 vaccinations. Patients who received their first 2 vaccinations when they were B cell depleted and the third and fourth vaccination during B cell recovery demonstrated similar antibody induction dynamics as patients with normal B cell numbers during the first 2 vaccinations. However, the neutralising capacity of these antibodies was significantly better than that of patients with normal B cell numbers after two vaccinations. Interpretation: A fourth mRNA COVID-19 vaccination improved S1 IgG concentrations in the majority of patients with a haematological malignancy. Vaccination during B cell depletion may pave the way for better quality of antibody responses after B cell reconstitution. Funding: The Netherlands Organisation for Health Research and Development and Amsterdam UMC.

3.
Cancers (Basel) ; 15(9)2023 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-37174028

RESUMEN

COVID-19 vaccinations are recommended for children with cancer but data on their vaccination response is scarce. This study assesses the antibody and T-cell response following a 2- or 3-dose vaccination with BNT162b2 mRNA COVID-19 vaccine in children (5-17 years) with cancer. For the antibody response, participants with a serum concentration of anti-SARS-CoV-2 spike 1 antibodies of >300 binding antibody units per milliliter were classified as good responders. For the T-cell response, categorization was based on spike S1 specific interferon-gamma release with good responders having >200 milli-international units per milliliter. The patients were categorized as being treated with chemo/immunotherapy for less than 6 weeks (Tx < 6 weeks) or more than 6 weeks (Tx > 6 weeks) before the first immunization event. In 46 patients given a 2-dose vaccination series, the percentage of good antibody and good T-cell responders was 39.3% and 73.7% in patients with Tx < 6 weeks and 94.4% and 100% in patients with Tx > 6 weeks, respectively. An additional 3rd vaccination in 16 patients with Tx < 6 weeks, increased the percentage of good antibody responders to 70% with no change in T-cell response. A 3-dose vaccination series effectively boosted antibody levels and is of value for patients undergoing active cancer treatment.

4.
iScience ; 26(1): 105741, 2023 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-36590159

RESUMEN

To investigate B-cell differentiation and maturation occurring in the germinal center (GC) using in vitro culture systems, key factors and interactions of the GC reaction need to be accurately simulated. This study aims at improving in vitro GC simulation using 3D culture techniques. Human B-cells were incorporated into PEG-4MAL hydrogels, to create a synthetic extracellular matrix, supported by CD40L cells, human tonsil-derived lymphoid stromal cells, and cytokines. The differentiation and antibody production of CD19+B-cells was best supported in a 5.0%-PEG-4MAL, 2.0 mM-RGD-peptide composition. The 3D culture significantly increased plasmablast and plasma cell numbers as well as antibody production, with less B-cell death compared to 2D cultures. Class switching of naive CD19+IgD+B-cells toward IgG+ and IgA+B-cells was observed. The formation of large B-cell clusters indicates the formation of GC-like structures. In conclusion, a well-characterized and controllable hydrogel-based human 3D lymphoid model is presented that supports enhanced B-cell survival, proliferation, differentiation, and antibody production.

5.
JAMA Oncol ; 8(10): 1477-1483, 2022 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-35951338

RESUMEN

Importance: It has become common practice to offer immunocompromised patients with hematologic cancers a third COVID-19 vaccination dose, but data substantiating this are scarce. Objective: To assess whether a third mRNA-1273 vaccination is associated with increased neutralizing antibody concentrations in immunocompromised patients with hematologic cancers comparable to levels obtained in healthy individuals after the standard 2-dose mRNA-1273 vaccination schedule. Design, Setting, and Participants: This prospective observational cohort study was conducted at 4 university hospitals in the Netherlands and included 584 evaluable patients spanning the spectrum of hematologic cancers and 44 randomly selected age-matched adults without malignant or immunodeficient comorbidities. Exposures: One additional mRNA-1273 vaccination 5 months after completion of the standard 2-dose mRNA-1273 vaccination schedule. Main Outcomes and Measures: Serum immunoglobulin G (IgG) antibodies to spike subunit 1 (S1) antigens prior to and 4 weeks after a third mRNA-1273 vaccination, and antibody neutralization capacity of wild-type, Delta, and Omicron variants in a subgroup of patients. Results: In this cohort of 584 immunocompromised patients with hematologic cancers (mean [SD] age, 60 [11.2] years; 216 [37.0%] women), a third mRNA-1273 vaccination was associated with median S1-IgG concentrations comparable to concentrations obtained by healthy individuals after the 2-dose mRNA-1273 schedule. The rise in S1-IgG concentration after the third vaccination was most pronounced in patients with a recovering immune system, but potent responses were also observed in patients with persistent immunodeficiencies. Specifically, patients with myeloid cancers or multiple myeloma and recipients of autologous or allogeneic hematopoietic cell transplantation (HCT) reached median S1-IgG concentrations similar to those obtained by healthy individuals after a 2-dose schedule. Patients receiving or shortly after completing anti-CD20 therapy, CD19-directed chimeric antigen receptor T-cell therapy recipients, and patients with chronic lymphocytic leukemia receiving ibrutinib were less responsive or unresponsive to the third vaccination. In the 27 patients who received cell therapy between the second and third vaccination, S1 antibodies were preserved, but a third mRNA-1273 vaccination was not associated with significantly enhanced S1-IgG concentrations except for patients with multiple myeloma receiving autologous HCT. A third vaccination was associated with significantly improved neutralization capacity per antibody. Conclusions and Relevance: Results of this cohort study support that the primary schedule for immunocompromised patients with hematologic cancers should be supplemented with a delayed third vaccination. Patients with B-cell lymphoma and allogeneic HCT recipients need to be revaccinated after treatment or transplantation. Trial Registration: EudraCT Identifier: 2021-001072-41.


Asunto(s)
COVID-19 , Neoplasias Hematológicas , Mieloma Múltiple , Receptores Quiméricos de Antígenos , Humanos , Adulto , Femenino , Persona de Mediana Edad , Masculino , Formación de Anticuerpos , Vacuna nCoV-2019 mRNA-1273 , COVID-19/prevención & control , Estudios Prospectivos , Estudios de Cohortes , Vacunas contra la COVID-19 , SARS-CoV-2 , Neoplasias Hematológicas/terapia , Huésped Inmunocomprometido , Anticuerpos Neutralizantes , Inmunoglobulina G
7.
Blood Adv ; 6(5): 1537-1546, 2022 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-35114690

RESUMEN

Vaccination guidelines for patients treated for hematological diseases are typically conservative. Given their high risk for severe COVID-19, it is important to identify those patients that benefit from vaccination. We prospectively quantified serum immunoglobulin G (IgG) antibodies to spike subunit 1 (S1) antigens during and after 2-dose mRNA-1273 (Spikevax/Moderna) vaccination in hematology patients. Obtaining S1 IgG ≥ 300 binding antibody units (BAUs)/mL was considered adequate as it represents the lower level of S1 IgG concentration obtained in healthy individuals, and it correlates with potent virus neutralization. Selected patients (n = 723) were severely immunocompromised owing to their disease or treatment thereof. Nevertheless, >50% of patients obtained S1 IgG ≥ 300 BAUs/mL after 2-dose mRNA-1273. All patients with sickle cell disease or chronic myeloid leukemia obtained adequate antibody concentrations. Around 70% of patients with chronic graft-versus-host disease (cGVHD), multiple myeloma, or untreated chronic lymphocytic leukemia (CLL) obtained S1 IgG ≥ 300 BAUs/mL. Ruxolitinib or hypomethylating therapy but not high-dose chemotherapy blunted responses in myeloid malignancies. Responses in patients with lymphoma, patients with CLL on ibrutinib, and chimeric antigen receptor T-cell recipients were low. The minimal time interval after autologous hematopoietic cell transplantation (HCT) to reach adequate concentrations was <2 months for multiple myeloma, 8 months for lymphoma, and 4 to 6 months after allogeneic HCT. Serum IgG4, absolute B- and natural killer-cell number, and number of immunosuppressants predicted S1 IgG ≥ 300 BAUs/mL. Hematology patients on chemotherapy, shortly after HCT, or with cGVHD should not be precluded from vaccination. This trial was registered at Netherlands Trial Register as #NL9553.


Asunto(s)
COVID-19 , Hematología , Vacuna nCoV-2019 mRNA-1273 , COVID-19/prevención & control , Vacunas contra la COVID-19 , Humanos , SARS-CoV-2 , Vacunación
8.
Vaccines (Basel) ; 10(1)2022 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-35062794

RESUMEN

Mumps outbreaks and breakthrough infections of measles and rubella have raised concerns about waning of vaccine-induced immunity after two doses of measles-mumps-rubella (MMR) vaccination. In the present follow-up study, serum IgG antibodies against mumps, measles and rubella, as well as the functional neutralizing antibodies against both the mumps vaccine strain and mumps outbreak strains were measured longitudinally in young adults that received a third MMR (MMR3) dose. The mumps-specific IgG and virus neutralizing antibody levels at 3 years after vaccination were still elevated compared to pre-vaccination antibody levels, although the differences were smaller than at earlier timepoints. Interestingly, subjects with low antibody levels to mumps before vaccination benefited the most as they showed the strongest antibody increase after an MMR3 dose. Three years after an MMR3 dose, all subjects had antibody levels to measles and rubella above the internationally agreed antibody cutoff levels for clinical protection. Our data support the recommendation that an MMR3 dose may provide additional protection for those that have become susceptible to mumps virus infection during outbreaks. MMR3 also resulted in an increase in anti-measles and rubella antibody levels that lasted longer than might have been expected.

9.
J Infect Dis ; 225(10): 1755-1764, 2022 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-34134138

RESUMEN

BACKGROUND: Measles outbreaks are reported worldwide and pose a serious threat, especially to young unvaccinated infants. Early measles vaccination given to infants under 12 months of age can induce protective antibody levels, but the long-term antibody functionalities are unknown. METHODS: Measles-specific antibody functionality was tested using a systems serology approach for children who received an early measles vaccination at 6-8 or 9-12 months, followed by a regular dose at 14 months of age, and children who only received the vaccination at 14 months. Antibody functionalities comprised complement deposition, cellular cytotoxicity, and neutrophil and cellular phagocytosis. We used Pearson's r correlations between all effector functions to investigate the coordination of the response. RESULTS: Children receiving early measles vaccination at 6-8 or 9-12 months of age show polyfunctional antibody responses. Despite significant lower levels of antibodies in these early-vaccinated children, Fc effector functions were comparable with regular-timed vaccinees at 14 months. However, 3-year follow-up revealed significant decreased polyfunctionality in children who received a first vaccination at 6-8 months of age, but not in children who received the early vaccination at 9-12 months. CONCLUSIONS: Antibodies elicited in early-vaccinated children are equally polyfunctional to those elicited from children who received vaccination at 14 months. However, these antibody functionalities decay more rapidly than those induced later in life, which may lead to suboptimal, long-term protection.


Asunto(s)
Formación de Anticuerpos , Sarampión , Anticuerpos Antivirales , Niño , Humanos , Lactante , Sarampión/epidemiología , Vacuna Antisarampión , Virus del Sarampión , Vacunación
10.
Lancet Oncol ; 22(12): 1681-1691, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34767759

RESUMEN

BACKGROUND: Patients with cancer have an increased risk of complications from SARS-CoV-2 infection. Vaccination to prevent COVID-19 is recommended, but data on the immunogenicity and safety of COVID-19 vaccines for patients with solid tumours receiving systemic cancer treatment are scarce. Therefore, we aimed to assess the impact of immunotherapy, chemotherapy, and chemoimmunotherapy on the immunogenicity and safety of the mRNA-1273 (Moderna Biotech, Madrid, Spain) COVID-19 vaccine as part of the Vaccination Against COVID in Cancer (VOICE) trial. METHODS: This prospective, multicentre, non-inferiority trial was done across three centres in the Netherlands. Individuals aged 18 years or older with a life expectancy of more than 12 months were enrolled into four cohorts: individuals without cancer (cohort A [control cohort]), and patients with solid tumours, regardless of stage and histology, treated with immunotherapy (cohort B), chemotherapy (cohort C), or chemoimmunotherapy (cohort D). Participants received two mRNA-1273 vaccinations of 100 µg in 0·5 mL intramuscularly, 28 days apart. The primary endpoint, analysed per protocol (excluding patients with a positive baseline sample [>10 binding antibody units (BAU)/mL], indicating previous SARS-CoV-2 infection), was defined as the SARS-CoV-2 spike S1-specific IgG serum antibody response (ie, SARS-CoV-2-binding antibody concentration of >10 BAU/mL) 28 days after the second vaccination. For the primary endpoint analysis, a non-inferiority design with a margin of 10% was used. We also assessed adverse events in all patients who received at least one vaccination, and recorded solicited adverse events in participants who received at least one vaccination but excluding those who already had seroconversion (>10 BAU/mL) at baseline. This study is ongoing and is registered with ClinicalTrials.gov, NCT04715438. FINDINGS: Between Feb 17 and March 12, 2021, 791 participants were enrolled and followed up for a median of 122 days (IQR 118 to 128). A SARS-CoV-2-binding antibody response was found in 240 (100%; 95% CI 98 to 100) of 240 evaluable participants in cohort A, 130 (99%; 96 to >99) of 131 evaluable patients in cohort B, 223 (97%; 94 to 99) of 229 evaluable patients in cohort C, and 143 (100%; 97 to 100) of 143 evaluable patients in cohort D. The SARS-CoV-2-binding antibody response in each patient cohort was non-inferior compared with cohort A. No new safety signals were observed. Grade 3 or worse serious adverse events occurred in no participants in cohort A, three (2%) of 137 patients in cohort B, six (2%) of 244 patients in cohort C, and one (1%) of 163 patients in cohort D, with four events (two of fever, and one each of diarrhoea and febrile neutropenia) potentially related to the vaccination. There were no vaccine-related deaths. INTERPRETATION: Most patients with cancer develop, while receiving chemotherapy, immunotherapy, or both for a solid tumour, an adequate antibody response to vaccination with the mRNA-1273 COVID-19 vaccine. The vaccine is also safe in these patients. The minority of patients with an inadequate response after two vaccinations might benefit from a third vaccination. FUNDING: ZonMw, The Netherlands Organisation for Health Research and Development.


Asunto(s)
Vacuna nCoV-2019 mRNA-1273/efectos adversos , Vacuna nCoV-2019 mRNA-1273/inmunología , Antineoplásicos/inmunología , Inmunoterapia , Neoplasias/terapia , Vacunación/efectos adversos , Vacuna nCoV-2019 mRNA-1273/administración & dosificación , Anciano , Anticuerpos Antivirales/sangre , Antineoplásicos/uso terapéutico , COVID-19/prevención & control , Estudios de Cohortes , Terapia Combinada , Femenino , Humanos , Inmunogenicidad Vacunal , Inmunomodulación , Inyecciones Intramusculares , Interferón gamma/metabolismo , Masculino , Persona de Mediana Edad , Neoplasias/inmunología , Países Bajos , Estudios Prospectivos , SARS-CoV-2/inmunología , Encuestas y Cuestionarios
11.
Travel Med Infect Dis ; 44: 102194, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34728385

RESUMEN

BACKGROUND: While measles vaccination is widely implemented in national immunisation programmes, measles incidence rates are increasing worldwide. Dutch inhabitants who were born between 1965-1975 may have fallen between two stools, lacking protection from a natural infection, and having missed the introduction of the measles vaccination schedule. With this study we aim to find the measles seroprevalence in travellers born between 1965 and 1975, compared to those born before 1965 and after 1975. METHODS: Families travelling to Eastern Europe or outside Europe during the preceding year were recruited via Dutch secondary schools between 2016 and 2018. Their vaccination status was assessed using questionnaires, vaccination records and measles serology in dried blood spot (DBS) eluates. Measles virus antibody concentrations were determined with an ELISA (EUROIMMUNE®) and a subset was retested with a focus reduction neutralization assay (FRNT). RESULTS: In 188 (79%) of the 239 available DBS eluates, the ELISA could detect sufficient measles virus-specific IgG antibodies. Of the negative samples that were retested with FRNT, 85% remained negative, resulting in an overall seroprevalence of 82% [95% CI 76-86]. Children had a lower seroprevalence (72%) than adults (87%). Travellers born between 1965 and 1975 were protected in 89%. CONCLUSIONS: In this study, we report a measles seroprevalence of 82% among Dutch travelling families. Remarkably, seroprevalence rates were lowest in children (12-18 years) instead of travellers born between 1965 and 1975. Although a fraction of people without detectable antibodies may be protected by other immune mechanisms, these data suggest that measles (re)vaccination should be considered for travellers to endemic regions.


Asunto(s)
Sarampión , Adulto , Anticuerpos Antivirales , Niño , Humanos , Esquemas de Inmunización , Sarampión/epidemiología , Sarampión/prevención & control , Vacuna Antisarampión , Estudios Seroepidemiológicos , Vacunación
12.
Eur J Epidemiol ; 36(7): 735-739, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34114187

RESUMEN

BACKGROUND: The proportion of SARS-CoV-2 positive persons who are asymptomatic-and whether this proportion is age-dependent-are still open research questions. Because an unknown proportion of reported symptoms among SARS-CoV-2 positives will be attributable to another infection or affliction, the observed, or 'crude' proportion without symptoms may underestimate the proportion of persons without symptoms that are caused by SARS-CoV-2 infection. METHODS: Based on two rounds of a large population-based serological study comprising test results on seropositivity and self-reported symptom history conducted in April/May and June/July 2020 in the Netherlands (n = 7517), we estimated the proportion of reported symptoms among those persons infected with SARS-CoV-2 that is attributable to this infection, where the set of relevant symptoms fulfills the ECDC case definition of COVID-19, using inferential methods for the attributable risk (AR). Generalised additive regression modelling was used to estimate the age-dependent relative risk (RR) of reported symptoms, and the AR and asymptomatic proportion (AP) were calculated from the fitted RR. RESULTS: Using age-aggregated data, the 'crude' AP was 37% but the model-estimated AP was 65% (95% CI 63-68%). The estimated AP varied with age, from 74% (95% CI 65-90%) for < 20 years, to 61% (95% CI 57-65%) for the 50-59 years age-group. CONCLUSION: Whereas the 'crude' AP represents a lower bound for the proportion of persons infected with SARS-CoV-2 without COVID-19 symptoms, the AP as estimated via an attributable risk approach represents an upper bound. Age-specific AP estimates can inform the implementation of public health actions such as targetted virological testing and therefore enhance containment strategies.


Asunto(s)
Anticuerpos Antivirales/sangre , Infecciones Asintomáticas/epidemiología , COVID-19/epidemiología , SARS-CoV-2/inmunología , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Biomarcadores/sangre , COVID-19/diagnóstico , COVID-19/virología , Prueba Serológica para COVID-19 , Niño , Preescolar , Femenino , Humanos , Lactante , Masculino , Persona de Mediana Edad , Países Bajos/epidemiología , Distribución de Poisson , Análisis de Regresión , Medición de Riesgo , Autoinforme , Estudios Seroepidemiológicos , Adulto Joven
13.
Open Forum Infect Dis ; 7(11): ofaa505, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33269296

RESUMEN

BACKGROUND: Breakthrough infections of measles and mumps have raised concerns about the duration of vaccine-induced immunity, which might be improved by a third dose of measles-mumps-rubella vaccine (MMR3). METHODS: Here we compared (IgG) antibody levels against measles, mumps, and rubella in blood samples of 9-year-old children and young adults (18-25 years) following MMR2 and MMR3, respectively. RESULTS: We found that, in addition to antibody boosting for all 3 vaccine components, MMR3 resulted in lower antibody decay rates than MMR2; the declines were most prominent for mumps and rubella. CONCLUSIONS: This study suggests that MMR3 provides long-lasting seroprotection against measles, mumps, and rubella.

14.
Artículo en Inglés | MEDLINE | ID: mdl-33249407

RESUMEN

BACKGROUND: We aimed to detect SARS-CoV-2 serum antibodies in the general population of the Netherlands and identify risk factors for seropositivity amidst the first COVID-19 epidemic wave. METHODS: Participants (n=3207, aged 2-90 years), enrolled from a previously established nationwide serosurveillance study, provided a self-collected fingerstick blood sample and completed a questionnaire (median inclusion date 3 April 2020). IgG antibodies targeted against the spike S1-protein of SARS-CoV-2 were quantified using a validated multiplex-immunoassay. Seroprevalence was estimated controlling for survey design, individual pre-pandemic concentration, and test performance. Random-effects logistic regression identified risk factors for seropositivity. RESULTS: Overall seroprevalence in the Netherlands was 2.8% (95% CI 2.1 to 3.7), with no differences between sexes or ethnic background, and regionally ranging between 1.3 and 4.0%. Estimates were highest among 18-39 year-olds (4.9%), and lowest in children 2-17 years (1.7%). Multivariable analysis revealed that persons taking immunosuppressants and those from the Orthodox-Reformed Protestant community had over four times higher odds of being seropositive compared to others. Anosmia/ageusia was the most discriminative symptom between seropositive (53%) and seronegative persons (4%, p<0.0001). Antibody concentrations in seropositive persons were significantly higher in those with fever or dyspnoea in contrast to those without (p=0.01 and p=0.04, respectively). CONCLUSIONS: In the midst of the first epidemic wave, 2.8% of the Dutch population was estimated to be infected with SARS-CoV-2, that is, 30 times higher than reported. This study identified independent groups with increased odds for seropositivity that may require specific surveillance measures to guide future protective interventions internationally, including vaccination once available.

15.
Nat Commun ; 11(1): 3436, 2020 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-32632160

RESUMEN

The world is entering a new era of the COVID-19 pandemic in which there is an increasing call for reliable antibody testing. To support decision making on the deployment of serology for either population screening or diagnostics, we present a detailed comparison of serological COVID-19 assays. We show that among the selected assays there is a wide diversity in assay performance in different scenarios and when correlated to virus neutralizing antibodies. The Wantai ELISA detecting total immunoglobulins against the receptor binding domain of SARS CoV-2, has the best overall characteristics to detect functional antibodies in different stages and severity of disease, including the potential to set a cut-off indicating the presence of protective antibodies. The large variety of available serological assays requires proper assay validation before deciding on deployment of assays for specific applications.


Asunto(s)
Anticuerpos Antivirales/sangre , Infecciones por Coronavirus/diagnóstico , Neumonía Viral/diagnóstico , Pruebas Serológicas/normas , Anticuerpos Neutralizantes/sangre , Betacoronavirus , COVID-19 , Prueba de COVID-19 , Técnicas de Laboratorio Clínico , Ensayo de Inmunoadsorción Enzimática , Ensayos Analíticos de Alto Rendimiento , Humanos , Mediciones Luminiscentes , Pruebas de Neutralización , Pandemias , SARS-CoV-2 , Sensibilidad y Especificidad
16.
J Infect Dis ; 221(6): 902-909, 2020 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-31112277

RESUMEN

BACKGROUND: Waning of vaccine-induced immunity is considered to play a central role in the reemergence of mumps among vaccinated young adults. The aim of the present study was to investigate antibody responses and safety of a third dose of measles-mumps-rubella vaccine (MMR-3) in 150 young adults. Antibody levels were related to a surrogate of protection based on preoutbreak serum antibody levels in 31 persons with and 715 without serological evidence of mumps. METHODS: Mumps virus-specific immunoglobulin G (IgG) antibody responses and mumps virus-neutralizing antibody responses (based on the focus-reduction neutralizing test) against both the Jeryl Lynn mumps virus vaccine strain (hereafter, the "vaccine strain") and the MuVi/Utrecht.NLD/40.10 outbreak strain (hereafter, the "outbreak strain") were determined, and vaccine safety was evaluated. RESULTS: Four weeks following MMR-3 receipt, levels of IgG, anti-vaccine strain, and anti-outbreak strain antibodies increased by a factor of 1.65, 1.34, and 1.35, respectively. Although antibody levels decreased 1 year later, they were still above the baseline level by a factor of 1.37, 1.15, and 1.27, respectively. Based on the surrogate protective antibody cutoff, significantly more participants were protected against mumps virus infection up to 1 year after vaccination (ie, they had antibody levels above the presumed threshold for herd immunity). CONCLUSIONS: MMR-3 receipt increased antibody levels that may protect against mumps virus infection for longer than previously assumed and is expected to be a good and safe intervention for controlling a mumps outbreak. CLINICAL TRIALS REGISTRATION: 2016-001104-36; NTR5911.


Asunto(s)
Vacuna contra el Sarampión-Parotiditis-Rubéola/administración & dosificación , Paperas/prevención & control , Adolescente , Adulto , Anticuerpos Neutralizantes/sangre , Anticuerpos Antivirales/sangre , Estudios de Cohortes , Brotes de Enfermedades , Femenino , Humanos , Inmunoglobulina G/sangre , Estudios Longitudinales , Masculino , Vacuna contra el Sarampión-Parotiditis-Rubéola/efectos adversos , Estudios Prospectivos , Curva ROC , Adulto Joven
17.
Lancet Infect Dis ; 19(11): 1235-1245, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31548079

RESUMEN

BACKGROUND: Measles is an important cause of death in children, despite the availability of safe and cost-saving measles-containing vaccines (MCVs). The first MCV dose (MCV1) is recommended at 9 months of age in countries with ongoing measles transmission, and at 12 months in countries with low risk of measles. To assess whether bringing forward the age of MCV1 is beneficial, we did a systematic review and meta-analysis of the benefits and risks of MCV1 in infants younger than 9 months. METHODS: For this systematic review and meta-analysis, we searched MEDLINE, EMBASE, Scopus, Proquest, Global Health, the WHO library database, and the WHO Institutional Repository for Information Sharing database, and consulted experts. We included randomised and quasi-randomised controlled trials, outbreak investigations, and cohort and case-control studies without restriction on publication dates, in which MCV1 was administered to infants younger than 9 months. We did the literature search on June 2, 2015, and updated it on Jan 14, 2019. We assessed: proportion of infants seroconverted, geometric mean antibody titre, avidity, cellular immunity, duration of immunity, vaccine efficacy, vaccine effectiveness, and safety. We used random-effects models to derive pooled estimates of the endpoints, where appropriate. We assessed methodological quality using the Grading of Recommendations, Assessment, Development, and Evaluation guidelines. FINDINGS: Our search identified 1156 studies, of which 1071 were screened for eligibility. 351 were eligible for full-text screening, and data from 56 studies that met all inclusion criteria were used for analysis. The proportion of infants who seroconverted increased from 50% (95% CI 29-71) for those vaccinated with MCV1 at 4 months of age to 85% (69-97) for those were vaccinated at 8 months. The pooled geometric mean titre ratio for infants aged 4-8 months vaccinated with MCV1 compared with infants vaccinated with MCV1 at age 9 months or older was 0·46 (95% CI 0·33-0·66; I2=99·9%, p<0·0001). Only one study reported on avidity and suggested that there was lower avidity and a shorter duration of immunity following MCV1 administration at 6 months of age than at 9 months of age (p=0·0016) or 12 months of age (p<0·001). No effect of age at MCV1 administration on cellular immunity was found. One study reported that vaccine efficacy against laboratory-confirmed measles virus infection was 94% (95% CI 74-98) in infants vaccinated with MCV1 at 4·5 months of age. The pooled vaccine effectiveness of MCV1 in infants younger than 9 months against measles was 58% (95% CI 9-80; I2=84·9%, p<0·0001). The pooled vaccine effectiveness estimate from within-study comparisons of infants younger than 9 months vaccinated with MCV1 were 51% (95% CI -44 to 83; I2=92·3%, p<0·0001), and for those aged 9 months and older at vaccination it was 83% (76-88; I2=93·8%, p<0·0001). No differences in the risk of adverse events after MCV1 administration were found between infants younger than 9 months and those aged 9 months of older. Overall, the quality of evidence ranged from moderate to very low. INTERPRETATION: MCV1 administered to infants younger than 9 months induces a good immune response, whereby the proportion of infants seroconverted increases with increased age at vaccination. A large proportion of infants receiving MCV1 before 9 months of age are protected and the vaccine is safe, although higher antibody titres and vaccine effectiveness are found when MCV1 is administered at older ages. Recommending MCV1 administration to infants younger than 9 months for those at high risk of measles is an important step towards reducing measles-related mortality and morbidity. FUNDING: WHO.


Asunto(s)
Anticuerpos Antivirales/sangre , Esquemas de Inmunización , Vacuna Antisarampión/efectos adversos , Vacuna Antisarampión/inmunología , Virus del Sarampión/inmunología , Sarampión/prevención & control , Factores de Edad , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos/epidemiología , Femenino , Humanos , Inmunidad Celular , Lactante , Masculino , Vacuna Antisarampión/administración & dosificación , Medición de Riesgo , Resultado del Tratamiento
19.
J Infect Dis ; 215(8): 1181-1187, 2017 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-28368471

RESUMEN

Background: Routinely, the first measles, mumps, and rubella (MMR) vaccine dose is given at 14 months of age in the Netherlands. However, during a measles epidemic in 2013-2014, MMR vaccination was also offered to 6-14-month-olds in municipalities with <90% MMR vaccination coverage. We studied the effectiveness of the early MMR vaccination schedule. Methods: Parents of all infants targeted for early MMR vaccination were asked to participate. When parent(s) suspected measles, their infant's saliva was tested for measles-specific antibodies. The vaccine effectiveness (VE) against laboratory-confirmed and self-reported measles was estimated using Cox regression, with VE calculated as 1 minus the hazard ratio. Results: Three vaccinated and 10 unvaccinated laboratory-confirmed cases occurred over observation times of 106631 and 23769 days, respectively. The unadjusted VE against laboratory-confirmed measles was 94% (95% confidence interval [CI], 79%-98%). After adjustment for religion and sibling's vaccination status, the VE decreased to 71% (-72%-95%). For self-reported measles, the unadjusted and adjusted VE was 67% (40%-82%) and 43% (-12%-71%), respectively. Conclusions: Infants vaccinated between 6 and 14 months of age had a lower risk of measles than unvaccinated infants. However, part of the effect was caused by herd immunity, since vaccinated infants were more likely to be surrounded by other vaccinated individuals.


Asunto(s)
Vacuna contra el Sarampión-Parotiditis-Rubéola/uso terapéutico , Sarampión/epidemiología , Sarampión/prevención & control , Paperas/prevención & control , Rubéola (Sarampión Alemán)/prevención & control , Vacunación/estadística & datos numéricos , Anticuerpos Antivirales/análisis , Femenino , Humanos , Esquemas de Inmunización , Lactante , Masculino , Países Bajos/epidemiología , Modelos de Riesgos Proporcionales , Estudios Prospectivos , Saliva/inmunología , Autoinforme
20.
Euro Surveill ; 22(3)2017 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-28128092

RESUMEN

Since the early 1990s, the Netherlands has experienced several large measles epidemics, in 1992-94, 1999-2000 and in 2013-14. These outbreaks mainly affected orthodox Protestants, a geographically clustered population with overall lower measles-mumps-rubella first dose (MMR-1) vaccination coverage (60%) than the rest of the country (> 95%). In the 2013-14 epidemic described here, which occurred between 27 May 2013 and 12 March 2014, 2,700 cases were reported. Several control measures were implemented including MMR vaccination for 6-14-month-olds and recommendations to reduce the risk in healthcare workers. The vast majority of reported cases were unvaccinated (94%, n = 2,539), mostly for religious reasons (84%, n = 2,135). The median age in the epidemic was 10 years, 4 years older than in the previous epidemic in 1999-2000. A likely explanation is that the inter-epidemic interval before the 2013-2014 epidemic was longer than the interval before the 1999-2000 epidemic. The size of the unvaccinated orthodox Protestant community is insufficient to allow endemic transmission of measles in the Netherlands. However, large epidemics are expected in the future, which is likely to interfere with measles elimination in the Netherlands and elsewhere.


Asunto(s)
Notificación de Enfermedades/estadística & datos numéricos , Epidemias , Vacunación Masiva/estadística & datos numéricos , Sarampión/epidemiología , Vacunación/estadística & datos numéricos , Adolescente , Distribución por Edad , Niño , Brotes de Enfermedades , Femenino , Hospitalización/estadística & datos numéricos , Humanos , Incidencia , Masculino , Notificación Obligatoria , Sarampión/inmunología , Sarampión/prevención & control , Países Bajos/epidemiología , Protestantismo , Características de la Residencia , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...